ciifad banner

logoarrowSRI International Network and Resources Center


Home > About SRI > Application To Other Crops > Other Crops
SYSTEM OF CROP INTENSIFICATION (SCI)
- SRI Concepts and Methods Applied to Other Crops -

 

   

 

Farmers and NGO staff working with them have begun trying out a variety of adaptations of SRI concepts and methods to other crops in addition to wheat, sugarcane, finger millet, and teff. Organizations in several countries have documented successes using SRI principles with other crops such as maize, pulses, turmeric, mustard, eggplant and other vegetables. Some of these are related below.

MAIZE

India

In India, 183 farmers cooperating with the People’s Science Institute in Dehradun, Uttarakhand, planted maize with adapted SRI methods on 10.34 ha in 2009, a drought season. They direct-seeded maize, 1-2 seeds per hill, with hills spaced 30x30 cm. They added home-made biofertilizers along with compost to improve soil organic content. The resulting plants averaged 3 cobs per plant, compared with 2 per plant on the more closely spaced conventional controls. Average height was 173 cm compared to 149 cm, and grains per cob were 248 compared to 225 on the controls. Maize yield was 2.29 t/ha compared to 1.71 t/ha with conventional management, a 34% increase. Farmers liked the alternative methods and thought they could get better performance in a more normal year, according to Debashish Sen, PSI program leader. (See PSI data for maize.)

Pakistan

SMI comparison FarmAll's CEO, Asif Sharif has adapted SRI, conservation agriculture and organic agriculture (a combination he calls "paradoxical agriculture") to create a System of Maize Intensification (SMI) that involves raised beds and mechanization. (Click on comparison of furrows vs raised beds at right).

SMI involves 1) timely planting, 2) minimizing plant trauma through use of precision weeder/soil aerator for mechanical weeding between plant rows on the raised beds 3) optimally wide spacing between plants (69cm between rows and 16.5cm spacing between plants in Spring; 20 cm between plants in the Autumn crop) 4) weeding and active soil aeration (once in Spring and twice in Autumn), 5) precise water management (as is possible with raised beds) and 6) compost application to enhance the structure and functioning of soil systems. (See Sharif's 2012 report for details.)

Madagascar

In Madagascar in 1999, when Bruno Adrianaivo and Norman Uphoff visited the SRI farm of Ralalason at Soatanana, about two hours’ drive from the regional capital of Fianarantsoa, to see the field where Ralalason had had a record-setting SRI harvest that year, he described his own experiments with maize adapting SRI methods. This has not been independently verified, so the following information is offered to encourage others to try their own variations to see if they can get similar results.

Ralalason said that from his SRI experience he had learned the value of applying a lot of compost to his soil, so he had put large amounts of compost on his maize field (about 8 x 10 meters). He was at the time very land-limited; however, his SRI successes have enabled him to triple his landholdings since the visit. Ralalason said that he had planted the hills about 40 cm apart with single seeds, using direct seeding, with no transplanting. When the maize tillers were 60-70 cm tall, he removed, carefully, the lowest leaf and the sheath that was attached to that leaf, wrapped around the tiller, down to the ground. This exposed the meristematic tissue in the culm first to the air and then to a ‘new environment’ (my interpretation) which he created by heaping a handful of compost up around the base of the plant, covering the culm with moist, dark organic matter 3-4 cm high.

This ‘tricked’ the maize plant into resuming tillering, and Ralalason said that he got usually 5 more tillers growing up from each plant this way. He said further that he got 2-3 ears from each tiller, and they were all good ears. He could have gotten six tillers from a hill by planting six seeds. But then there would have been six root systems in close proximity, all competing for nutrients and space. This ‘trick’ was like grafting six tillers onto a single root system, which was growing in very rich, loose soil. Most soils in Madagascar, by contrast, are quite compacted, having little soil organic matter.

Uphoff tried this technique in his garden back in Ithaca, NY, but did not see this effect, perhaps because he planted the maize one month past the recommended date. Glenn Lines, CIIFAD's team leader in Madagascar, tried the technique in his garden in Moramanga and saw the multiple-tillering effect.

This is not a methodology that farmers with large maize fields would consider adopting because of its labor-intensity. But small farmers who have very little land and are getting low yields might try it, starting from a recognition that the key to success is increased soil organic matter, capitalized upon by plant management to induce multiple tillering.

Ralalason, having very little land, invested his labor in collecting biomass from any and all possible sources: straw, weeds, banana leaves (for K), wild ginger (a weed high in P), leguminous shrubs, sawdust, miscellaneous animal manures, etc., to enhance his land’s fertility. His ‘theory’ for compost-making is to maximize the diversity of biomass sources. This seems to be working for him.

LEGUMES / PULSES / SPURGES

Recent Publications:
Karnataka, India

After experiencing good results with both the System of Rice Intensification and adaptation of SRI principles to finger millet, the AME Foundation (AMEF) began trying out SRI principles on red gram with 35 farmers in five villages of Bangarpet Taluk in 2010-2011. In the case of red gram, the practices promoted by AMEF include using less seed, transplanting seedlings of right age; wider spacing; weed management and other sustainable agriculture practices (in-situ soil and water management practices, seed treatment, use of bio agents, etc.). Transplanting 30-35 day old seedlings helps avoid low yields related to late planting in direct -seeded fields when rains are late. With the new system, the yield increased by more than 70% with farmers harvesting approximately 6 quintals per acre as opposed to the usual average yield in the area of 3.5 quintals/acre. (See the AMEF publication System of Crop Intensification: AMEF Experience in Red Gram for more information).

Tamil Nadu, India

Trials on castor bean (Ricinus communis) conducted during late Kharif 2012-2013 by M. Daisy et al at Tamil Nadu Agricultural Univeristy showed marked variations on productivity due to adoption of system of crop intensification (SCI) practices for Castor hybrid YRCH 1. Plantsrown under 120 x 120 cm spacing with 100% NK and mechanical weeding twice t 30 and 60 DAS produced better yield besides being economically competitive and productive than other treatments. Locations where the mechanical weeders are not available, castor can be raised either 120 x 12 0 cm or 120 x 90 cm with 100% NK and hand weeding twice at 30 and 60 DAS for obtaining higher yield, oil yield and net return and per rupee invested.

Uttarakhand and Himachal Pradesh, India

In Uttarakhand and Himachal Pradesh states of India, People's Science Institute got farmers to experiment in 2009, a drought year, with using SRI methods adapted to several leguminous crops: kidney beans (rajma), black gram, and soybean (N = 697, 314 and 77, respectively). The practices have been described in a note for SRI colleagues.

The 2009 results were, overall, very promising, with a 69% increase for kidney beans (from 1.3 to 2.2 t/ha), a 57% increase for black gram (from 1.4 to 2.2 t/ha), and a 29% increase for soybean (from 2.8 to 3.6 t/ha) (see PSI PowerPoint presentation on SCI performance during drought). Farmers are just beginning to get acquainted and comfortable with these adaptations of growing methods, PSI reports, so they are hopeful of better results in the future.

MUSTARD /RAPESEED (CANOLA)

Recent Publications:
Bihar, India

System of Mustard Intensification (SMI) in Bihar, IndiaThe application of SRI principles to mustard (rapeseed, canola) is spreading in India, particularly in the states of Bihar and West Bengal. Anil Verma, the PRADAN team leader in Gaya district, reports that a Bihar state government delegation of officers and specialists, measured the yield on the mustard field of one Gaya farmer as 4.8 t/ha, which greatly surpasses the usual yield of 1 t/ha. The state government is “quite excited about this,” Verma reports. Recommendations for adapting SRI principles to mustard can be found on pp. 10-18 of the booklet "Growing Crops with SRI Principles" from the SRI Secretariat in Bhubaneshwar.

The Agricultural Production Commissioner of the state has visited fields of rapeseed and wheat cultivated under SCI/SRI practices, and large numbers of officials are also visiting these plots. Dr. O. P. Rupela, retired senior scientist from ICRISAT, is shown at right standing with Gaya district farmer in front of his SCI mustard field. The farmer told Rupela and others visiting his farm on February 28, 2011, that he is now getting a yield over 3 t/ha, compared with his previous yield of 1 t/ha when using SRI concepts for his mustard crop.

Orissa, India

In Orissa state of India, Pravash Chandra Satpathy has developed a system that has many elements of SRI practice, although he developed this himself some 25 years ago and had used the designation “System of Mustard Intensification,” he says, as an afterthought. Rather than broadcast mustard seed (6-10 kg/ha), he grows seedlings (using 200-400 g/ha), which are transplanted in rows 50-60 cm apart, very carefully as with SRI. Although the plant population is cut by 95% or more, the methods used give Pravash a higher yield than his neighbors get, and with much higher economic returns -- a benefit:cost ratio of 3.5:1. (see System of Mustard Intensification article)

Organic fertilization (FYM) plus some biofertilizers are used, with some inorganic amendments too (the soil is low in boron, so borax is added). The management system requires just three irrigations, and soil-aerating weeding is done. The crop matures about 15 days earlier, as often reported for SRI with rice.

EGGPLANT (brinjal or aubergine)

Orissa, India

Also in Orissa, the NGO Udyama which is active in SRI promotion in this state, reports some initial positive results from applying SRI concepts and methods to aubergine (eggplant or brinjal). A report from Udyama director Jayanta Kumar Panda says that some farmers have gotten double the usual aubergine yield on an area basis, and 1.5 x previous top yields. Wider spacing, organic fertilization, and other management changes are giving plants with many more blossoms and more and bigger fruits. This experience encourages farmers working with Udyama to see whether they too can get ‘more from less’ (fewer plants, fewer external inputs). Recommendations for adapting SRI principles to eggplant can be found on pp. 10-18 of the booklet "Growing Crops with SRI Principles" from the SRI Secretariat in Bhubaneshwar.

ONIONS, POTATOS, CARROTS

Punjab, Pakistan

After successful adaptation of SRI principles and practices for rice grown on permanent raised beds, FarmAll Technology Pvt. Ltd., has further adapted these techniques and machinery for a succession of other crops, including wheat, onion, carrots and potato. (See report for details). Most of the land used is saline, with pH ranging between 8 and 9.5, and raised bed technology is very suitable for high saline soils. With the new system, the soil can be "sweetened" around the root zone by precision application of a mixture of chemical fertilizer, compost, gypsum, and sulfur. A single application can drop pH by one point, say from 9 to 8 (9 being 10 times more alkaline than 8). The experiments with other crops were conducted in high saline area where pH is >8.5, and water EC is  >3. (For more info contac Asif Sharif at FarmAll Technology.)

Bihar, India

While we do not have much information on SRI-inspired potato cultivation, a Jan. 27, 2012, article in the Indian Express, noted that potato farmers in the Nelanda district of Bihar were inspired by attention being paid to SRI rice farmers because of their huge rice yields. We look forward to hearing whether SRI adaptations to potatoes will increase their yields as well.

TURMERIC

Tamil Nadu

40 day old turmeric tranplantP. Baskaran, from Thumbal in Tamil Nadu's Salem District, has authored a manual on adapting SRI principles for turmeric. He says that the new methods, called Sustainable Turmeric Initiative (STI), yield 12.5 tons/acre while the usual yield is 10 tons/acre for conventional methods. With STI, sections of seed rhizomes weighing 20 to 35 grams each (180 kg/acre) are planted in a nursery and transplanted at about 40 days (see photo at right). SRI spacing between rows is 40 cm and between plants is 30 cm, while conventional spacing is 30 cm by 30 cm. Fertilization is not much different (drip irrigation and fertigation), but organic fertilization is increased with green manure (dhaincha) and other organic inputs.

According to Baskaran, STI had numerous advantages. Planting material is reduced by more than 80% as spacing between the plants is one-third greater than in conventional turmeric cultivation. Water-use is reduced by two-thirds, which is effective because of the plants' greater root growth and the better structure of the soil given its more organic management. Although the STI crop generally requires more cost and more care than with conventional turmeric production, the higher yields have ultimately resulted in an overall in cost reduction of 20% during 2010 and 2011. (For more details on STI, see the manual.)

 

 

 

 

 

 

IP logo AgNIC logo
The SRI International Network and Resources Center (SRI-Rice) is supported by
Ohrstrom Foundation, The Bridging Peace Fund, Marguerite and Norman Uphoff, and Jim Carrey's Better U Foundation
  Contact Us  | SRI-Rice is associated with International Programs - CALS at Cornell University  | ©2014